Последние статьи
Домой / Из-за Рубежа / Сборник вопросов по неразрушающему контролю. Тест визуальный контроль при газосварочных работах тест на тему. Откуда колебания волны

Сборник вопросов по неразрушающему контролю. Тест визуальный контроль при газосварочных работах тест на тему. Откуда колебания волны

Ниже приведены общие вопросы по билетам при аттестации специалистов по неразрушающему контролю на I, II и III уровни.

  1. Стандарты и ГОСТ на проведение неразрушающего метода контроля и диагностики.
  2. Дефекты, возникающие в результате сварки металлоконструкции.
  3. Дефекты, возникающие в результате проката и литья.
  4. Качество продукции и технический контроль.
  5. Виды и методы неразрушающего контроля.
  6. Геометрические дефекты элементов металлоконструкции.
  7. Нормы аттестации специалистов для выполнения неразрушающего контроля.
  8. Дефекты механической обработки материалов.
  9. Существующие дефекты металлоконструкции.
  10. Способы контроля механических характеристик материалов. Приборы, используемые для контроля механических характеристик.
  11. Диаграммы растяжения и сжатия углеродистых сталей.
  12. Виды напряжений, возникающие в материалах.
  13. Основные физические и механические параметры материалов (сталь, бетон, железобетон и др.).
  14. Контроль физических свойств материалов и изделий. Дефектоскопия и контроль внутреннего строения.

Оптический, визуальный и измерительный методы неразрушающего контроля:

  1. Сущность оптического метода контроля качества.
  2. Приборы, используемые для проведения оптического контроля качества продукции.
  3. Визуальный и визуально-оптический контроль качества.
  4. Оптические схемы, используемые для проведения оптического контроля.

Капиллярный метод

  1. Физический смысл капиллярного метода контроля.
  2. Требования безопасности при проведении капиллярного метода контроля.
  3. Определение и классификация дефектов.
  4. Последовательность выполнения капиллярного метода контроля.

Ультразвуковой метод

  1. Физические основы ультразвукового метода контроля.
  2. Распространение ультразвука в теле.
  3. Ультразвуковые приборы для определения качества и свойств металлов и изделий.
  4. Проблемы, возникающие при проведении ультразвукового контроля сварных, клепаных, паяных и других соединений.

Магнитный метод

  1. Основные понятия и термины при проведении магнитного контроля.
  2. Контроль механических свойств и структуры материалов магнитным методом контроля.
  3. Магнитные, магнитопорошковые, магнитографические дефектоскопы (магнитные порошки, используемые при проведении магнитных методов контроля (тип, способ нанесения)).

Электрический метод

  1. Общие сведения: термоэлектрический, трибоэлектрический, электроемкостный метод.
  2. Способы диагностирования электрическим методом тел качения.
  3. Методы и средства проведения дефектоскопии при электрическом контроле.

Тепловой метод

  1. Тепловой контроль. Физические основы метода.
  2. Виды теплопередачи материалу. Способы нагрева материалов и изделий.
  3. Средства контроля температуры: типы термометров. Методы определения теплофизических характеристик.
  4. Визуализация тепловых полей. Дефектоскопия и интроскопия тепловыми методами.

Метод течеискания

  1. Общие сведения и методика течеискания.
  2. Жидкостный метод при выполнений контроля методом течеискания.
  3. Пузырьковый метод.
  4. Галогенный метод.
  5. Масс-спектрометрический метод.
  6. Способы и схемы контроля. Средства контроля.

Радиоволновой метод

  1. Физическая основа радиоволнового метода контроля.
  2. Средства контроля физико-механических и технологических параметров. Визуализация радиоволновых полей.
  3. Типы приборов, используемые при радиоволновом методе контроля.
  4. Основные особенности электромагнитных процессов в СВЧ-диапазоне.

Радиационный метод

  1. Общие вопросы радиационного контроля качества.
  2. Рентгеновский контроль и гамма-дефектоскопия. Радиационная толщинометрия и толщинометрия многослойных изделий.
  3. Взаимодействие ионизирующего излучения с материалами. Индикация излучения.
  4. Контроль внутреннего строения при радиационном контроле качества. Специальные методы радиационного контроля качества.
  5. Источники корпускулярного излучения. Источники рентгеновского излучения.
  6. Техника безопасности и санитарные нормы при проведении радиационного контроля качества.

Вихретоковый метод

  1. Общая характеристика существующих вихретоковых методов контроля.
  2. Магнитная проницаемость, используемая в вихретоковом методе контроля: формулы, определения (зависит от типа сечения).
  3. Взаимосвязь объекта контроля и средств контроля. Материалы, контролируемые вихретоковым методом контроля.

Акустико-Эмиссионный метод

  1. Основные понятия метода. Акустический метод контроля: прямой и эхометод.
  2. Преобразователи, используемые для проведения акустических методов контроля. Отражение волн от некоторых слоев и стали.
  3. Акустические свойства некоторых материалов. Затухание ультразвука в газах и жидкостях.
  4. Типы волн, применяемые для акустических методов контроля. Классификация акустико-эмиссионных методов контроля.
  5. Основа импендансного метода (назначение метода, способы использования, принцип).
  6. Типы материалов, используемые при импендансном методе контроля.
  7. Метод контактного импенданса.
  8. Импендансные дефектоскопы (конструкции, принцип работы). Применение в импендансном методе контроля различного типа волн.
  9. Преобразователи импендансных дефектоскопов. Характеристики преобразователей.

Неразрушающий контроль – это сплошной контроль качества объектов, после которого они могут быть использованы по прямому назначению. Надежность контроля обеспечивается тремя основными факторами:

Организацией процесса контроля; техническими средствами; человеческим фактором.

При этом эффективные системы контроля должны обеспечиваться на каждом из этапов: изготовление – эксплуатация – ремонт . Высокую достоверность и надежность контроля можно обеспечить только путем его автоматизации, включая обработку информации с использованием вычислительной техники и выдачей документа с заключением о качестве объекта. На сегодняшний день идет активное обновление парка дефектоскопов.

Дефекты могут быть разного типа и определять его технологическую характеристику, например:

Несплошность, структурная неоднородность, отклонение размеров от номинальных и т.д.

Независимо от типа дефекты разделяют на три вида , который определяет его эксплуатационную характеристику: критический (недопустимый, остродефектный) – использовать продукцию невозможно, недопустимо или небезопасно; значительный – существенно влияющий на эксплуатационную характеристику объекта, но допустимый дефект; малозначительный.

    Ультразвук. Типы УЗК волн. Характеристики УЗК волн

Ультразвук представляет собой процесс распространения механических колебаний частиц среды с частотой от 20 кГц до 1000 МГц, сопровождающийся переносом энергии и не сопровождающийся переносом вещества. Отдельные частицы вещества при этом совершают колебания с некоторой амплитудой А (максимальное отклонение от положения равновесия) около своих положений равновесия. Время, за которое совершается полный цикл колебаний называется периодом (Т ). Колебательное движение отдельных частиц передается и вызывает ультразвуковые (акустические) волны , благодаря наличию упругих связей между соседними частицами. Упругость – свойство частиц среды возвращаться к первоначальному положению. Волну, в которой колебания отдельных частиц происходят в том же направлении, в котором распространяется волна, называют продольной . Продольная волна характеризуется тем, что в среде чередуются области сжатия и разрежения, повышенного и пониженного давления. Продольные волны могут распространяться в твердых телах, жидкостях и газах, то есть в любых средах. В жидкостях и газах могут распространяться только продольные волны. Волну, в которой колебания отдельных частиц происходят в направлении, перпендикулярном направлению распространения, называют поперечной или сдвиговой. Поперечные волны могут распространяться только в твердых средах. Основными характеристиками ультразвука являются скорость распространения (С), длина волны (), интенсивность (I ), частота (f ) и тип волны . Частота это величина обратная периоду (Т) и она показывает, сколько колебаний совершается в единицу времени (секунду). Скорость ультразвуковой волны зависит от физических свойств среды, в которой она распространяется и различна для разных типов волн. Для металлов скорость продольной ультразвуковой волны примерно в два раза больше скорости поперечной ультразвуковой волны.

    Интенсивность ультразвука. Затухание ультразвука.

При распространении ультразвуковая волна в направлении своего движения несет определенную энергию. Количество энергии, переносимое волной за единицу времени через единичную площадку перпендикулярную к направлению ее распространения, называют интенсивностью волны ( I ) . Интенсивность волны I пропорциональна квадрату амплитуды колебаний частиц (I А 2). На практике измеряют отношение амплитуд электрических сигналов преобразователей (будем обозначать буквами U 1 и U 2 ), которые в свою очередь пропорциональны амплитудам колебания частиц А 1 и А 2 . Единицей измерения в этом случае является децибел. По мере распространения волны, даже в строго определенном направлении без какого-либо расхождения, интенсивность ее падает. Уменьшение интенсивности волны называется затуханием ультразвука. Затухание волны происходит по экспоненциальному закону. Затухание ультразвуковых колебаний обусловлено двумя физическими процессами: поглощением и рассеянием . Поэтому коэффициент затухания можно записать: = погл. + расс . При поглощении механическая энергия колебаний частиц переходит в тепловую . Это происходит за счет внутреннего трения и теплопроводности среды. Поглощение наиболее сильно проявляется в жидкостях, газах и стеклах. Коэффициент затухания для данного материала растет с увеличением частоты ультразвука и температуры. Объясняется это тем, что доля энергии, переходящая в тепло за счет сил внутреннего трения, одинакова в пределах одного цикла колебаний. Поскольку с повышением частоты УЗК увеличивается количество циклов колебаний в единицу времени, то это ведет к росту потерь на переход энергии УЗК в тепло. Рассеяние ультразвука может быть вызвано наличием в материале зерен различных компонентов (например, феррит, графит), различной ориентацией кристаллических зерен, а также наличием пор или инородных включений. Увеличение рассеяния УЗ происходит в сварных стыках, структура которых изменена нагревом. Это затрудняет их контроль зеркально-теневым методом

    Нормальное падение УЗ волн на границу раздела сред. Коэффициенты отражения и прозрачности.

При нормальном падении ультразвуковой волны на границу раздела двух сред часть энергии волны отражается от поверхности раздела, а другая часть проходит сквозь нее. Распределение энергии отраженной и прошедшей волн зависят от механических характеристик граничащих материалов: скоростей волны и плотностей сред. Интенсивность отраженной волны отр определяется коэффициентом отражения R = отр / пад , где пад интенсивность падающей волны . Коэффициент отражения зависит от характеристик сред R=( 1 С 1 2 С 2 / 1 С 1 + 2 С 2 ) 2 . Аналогично, интенсивность прошедшей волны прош тоже является долей интенсивности падающей волны и величину этой доли можно определить с помощью коэффициента D коэффициента прозрачности (прохождения ) D = прош / пад . При этом R + D =1 или R + D =100%. Как видно из формулы, чем больше разница между акустическими сопротивлениями сред, тем больше коэффициент отражения R и меньше, соответственно, коэффициент прозрачности D . Например, граница сталь-воздух имеет большую разницу удельных акустических сопротивлений ( СТАЛИ = 45, ВОЗД = 0,00075) и, как следствие, коэффициент отражения R практически равен 1 (отражается 100% энергии волны), а коэффициент прозрачности соответственно будет равен нулю: D  0. Поэтому при падении ультразвуковой волны из стали или другого материала на границу с воздухом волна не сможет пройти сквозь нее, а будет полностью отражаться. Для прохождения ультразвуковых колебаний из пьезопреобразователя в контролируемое изделие и обратно необходимо между ними обязательно вводить жидкостную прослойку, которая вытесняет воздух и т. о. исчезает граница воздух-материал. С другой стороны, свойство ультразвуковых волн отражаться от границ сред с различными акустическими характеристиками используется для обнаружения дефектов типа нарушение сплошности : поры, трещины, заполненные газом (R = 1) или шлаковые и другие включения (0  R  1).

    Наклонное падение УЗ волн на границу раздела двух сред, закон Снеллиуса. Критические углы.

В случае наклонного падения, на границе раздела двух сред с различными скоростями ультразвуковых волн могут происходить три явления: отражение, преломление и трансформация волны.Отражением называют явление, при котором волна, упавшая на границу раздела двух сред изменяет свое направление распространения в той же среде.Преломление это изменение направления распространения ультразвуковой волны при прохождении через границу раздела двух сред. Трансформацией называют преобразование волн одного типа в волны другого типа, происходящее на границе раздела сред. Трансформация может происходить как при отражении волны, так и при ее преломлении.

Из закона отражения и преломления следует, что угол отражения волны того же типа, что и падающая, всегда равен углу падения волны. При прохождении границы раздела сред, имеющих одинаковые скорости, так же угол преломления будет равен углу падения. Для других случаев углы преломления и отражения волн всегда будут тем больше , чем выше скорости распространения этих волн. Если угол падения находится в пределах от 0º … 10º, то интенсивность преломленной поперечной волны (C t 2) незначительна, и таким образом, в контролируемое изделие можно ввести практически только продольную волну. Например, для ввода в изделие продольной волны под углом l 2 = 18º угол падения = 8º, а в прямых раздельно-совмещенных преобразователях угол падения составляет 0º … 4º.При увеличения угла падения значения всех остальных углов также увеличиваются. Угол падения, при котором угол преломления или отражения какой-либо волны становится равным 90 называют критическим углом. Так при некотором его значении = КР1 угол преломления продольной волны l 2 приближается к 90 0 , и она начинает скользить по границе раздела сред. Наименьший угол падения продольной волны, при котором продольная волна не проникает во вторую среду называется первым критическим углом КР1 . Скорость ее распространения и характер смещения частиц аналогичны характеристикам продольной волны, но эта волна быстро затухает вследствие отщепления от нее поперечной волны под углом 34º. Совокупность распространяющихся в этом случае волн называют головной волной. При дальнейшем увеличении угла падения наступает момент, когда угол преломления поперечной волны t 2 приближается к 90 0 и она не проникает во вторую среду, а скользит вдоль поверхности раздела. Наименьший угол падения продольной волны, при котором поперечная волна не будет проникать во вторую среду называется вторым критическим углом КР2 . Значения первого и второго критических углов можно рассчитать по соответствующим выражениям: sin КР1 = C l 1 / C l 2 , sin КР2 = C l 1 / C t 2 . Так для границы раздела оргстекло–сталь КР1 27º, КР2 55º и незначительно отклоняется от этих значений в зависимости от марки стали и температуры окружающей среды.Таким образом, при углах падения продольной волны на границу раздела под углами КР1  КР2 в объем твердого тела будет входить только поперечная волна, а при углах падения КР2 объемные волны во второй среде возбуждаться не будут.Для того чтобы возбудить в контролируемом изделии только поперечную волну – угол падения надо выбирать КР1  КР2 .

    Излучение и прием ультразвука. Материалы, используемые для изготовления пьезопластин. Характеристики пьезопластин.

В настоящее время наибольшее применение для излучения и приема ультразвука в дефектоскопии находит пьезоэлектрический эффект . Эффект заключается в том, что деформация кристаллов некоторых материалов (пъзоэлектриков ) вызывает появление на его гранях электрических зарядов. Если на пластинку из такого материала нанести электроды и с помощью проводников подсоединить их к чувствительному прибору, то окажется, что при сжатии пластины между электродами возникает электрическое напряжение определенной величины и знака. При растяжении пластины также возникает напряжение, но противоположного знака. Явление возникновения электрических зарядов на поверхностях пластины при ее деформации называют прямым пьезоэлектрическим эффектом . Существует также обратное явление, заключающееся в том, что если к электродам пластины подвести электрическое напряжение, размеры ее уменьшатся или увеличатся в зависимости от полярности приложенного напряжения. При изменении с определенной частотой знака приложенного напряжения пластина сжимается и растягивается с такой же частотой. Это явление изменения размеров пластины под действием электрического поля называют обратным пьезоэлектрическим эффектом. Таким образом, оказывается возможным при помощи пьезопластины преобразовывать электрические колебания в ультразвуковые (обратный пьезоэффект – для излучения ультразвука) и, наоборот, ультразвуковые в электрические (прямой пьезоэффект – для приема ультразвуковых колебаний). При этом еще раз важно отметить, что амплитуда электрического сигнала на электродах (при прямом и обратном пьезоэффекте) пропорциональна амплитуде механических колебаний частиц, что и позволяет измерять (сравнивать) интенсивности ультразвука. Для возбуждения и регистрации (излучения и приема) ультразвуковых колебаний применяют пьезоэлектрические преобразователи (ПЭП) в которых активными являются пьезоэлементы – пластины, выполненные из материала, обладающего пьезоэлектрическими свойствами с нанесенными на их поверхности металлическими электродами. Пьезоэлементы для ультразвуковой дефектоскопии чаще всего изготавливают из пьезокерамики: цирконата титаната свинца (ЦТС-19) и титаната бария (ТБК). Пластины из пьезокерамики дешевле и обладают большим коэффициентом преобразования по сравнению с природными кристаллами типа кварца. Температура, при нагреве выше которой пластины теряют свои пьезоэлектрические свойства, называется температурой (точкой ) Кюри . Пластины из ЦТС-19 теряют пьезоэлектрические свойства при температуре 290 0 С, а из ТБК при температуре 120 0 С. Основные эксплуатационные характеристики преобразователей: собственная резонансная частота, добротность, длина ближней зоны, угол аскрытия, диаграмма направленности определяются геометрическими размерами и формой пластины. Собственная резонансная (рабочая) частота тонкой пьезопластины определяется скоростью звука в пьезоматериале и ее толщиной.

    Конструкция прямых, наклонных, РС и комбинированных преобразователей. Структура их условного обозначения.

Для излучения и приема ультразвуковых колебаний используют пьезоэлектрические преобразователи (ПЭП). Основные элементы ПЭП: 1 – пьзоэлемент, 2 – демпфер и заливная масса, 3 – подводящие провода, 4 – разъем, 5 – корпус, 6 – протектор, 7 – призма, 8 – контролируемый объект, 9 – электроакустический экран. Пьезоэлемент (1) служит для преобразования электрических колебаний в акустические при возбуждении ультразвука и (или) обратно при его приеме. У прямого ПЭП (и в некоторых конструкциях раздельно-совмещенных (РС)) ПЭП он отделен от контролируемого изделия (8) протектором (6), который служит для защиты пьзоэлемента от истирания и механических повреждений. В наклонных и некоторых конструкциях РС ПЭП роль протектора выполняет призма (7), которая одновременно задает угол падения, то есть определяет угол ввода ультразвука в изделие. Пьезоэлемент соединен с разъемом (4) подводящими проводами (3). Демпфер (2) служит для создания коротких импульсов. Кроме того, вместе с заливной массой он придает преобразователю дополнительную механическую прочность. Все элементы ПЭП обычно помещаются в корпус (5). Прямые ПЭП служат для ввода в изделие продольных волн, а наклонные как продольных (при углах призмы до первого критического), но чаще поперечных или поверхностных волн. В комбинированных ПЭП имеется более двух пьезоэлементов с различными углами ввода УЗ. Маркируется пьезопреобразователь буквой П и набором цифр, например П 121-2,5-50. При этом первая цифра показывает способ ввода ультразвука в изделие и может быть: 1– контактный, 2 – иммерсионный, 3 – контактно-иммерсионный, 4 – бесконтактный. Вторая цифра относится к конструкции ПЭП и может быть: 1 – прямой, 2 – наклонный, 3 – комбинированный. Третья цифра показывает способ подключения ПЭП к дефектоскопу и может быть: 1 – совмещенная схема, 2 – раздельно-совмещенная, 3 – раздельная. Далее следует значение рабочей частоты в мегагерцах, угол ввода (для прямых может не указываться) и дополнительная информация изготовителя об особенностях конструкции, применяемых материалах, номере модели. На любом ПЭП обязательно указывается заводской номер

    Понятие ближней и дальней зоны. Диаграммы направленности УЗ излучателей.

Энергия ультразвуковой волны излучается не равномерно во все стороны, а в пределах узкого, слегка расходящегося пучка. Вблизи от излучателя волна распространяется без расхождения, эту зону называют ближней зоной или зоной Френеля. За пределами ближней зоны начинается дальняя зона или зона Фраунгофера. В этой зоне ультразвуковое поле, формируемое пластиной круглого сечения, можно представить в виде усеченного конуса. При увеличении частоты ультразвука угол 2 р , характеризующий раскрытие основного лепестка диаграммы направленности излучателя данного диаметра, будет уменьшаться. При частоте ультразвука 2,5 МГц и диаметре излучателя 2а = 12 мм, протяженность ближней зоны в стали составляет приблизительно 15 мм, а половина угла раскрытия р не превышает 14º. В ближней зоне интенсивность ультразвукового поля, как вдоль пучка, так и по его сечениюраспределена неравномерно и меняется от точки к точке. Вдальней зоне интенсивность плавно падает, как вдоль луча, так и по его сечению. Геометрическое место точек максимальной интенсивности поля в дальней зоне излучателя и его продолжение в ближней зоне называют акустической осью преобразователя . Направленность поля, или изменение интенсивности УЗК в дальней зоне в зависимости от угла р между направлением данного луча и акустической осью на постоянном расстоянии от излучателя можно отобразить с помощью так называемой диаграммы направленности . Если пьезоэлемент имеет форму диска, то форма основного лепестка диаграммы направленности прямого ПЭП симметрична относительно оси и имеет вид «булавы». Центральную часть диаграммы направленности, в пределах которой амплитуда поля уменьшается от единицы до нуля, называют основным лепестком . В пределах основного лепестка сосредоточено около 85% энергии поля излучения. Вне основного лепестка диаграмма направленности может иметь боковые лепестки

    Методы УЗ дефектоскопии: импульсный эхо-метод, теневой, зеркально-теневой и зеркальный методы.

Большинство ультразвуковых дефектоскопов являются импульсными. Принцип действия их основан на посылке ультразвуковых импульсов в изделие и приеме их отражений от несплошностей или конструктивных элементов изделий. Теневой метод контроля предполагает доступ к изделию с двух сторон (рис. 2.2) и реализуется при раздельной схеме включения ПЭП. В этом случае ультразвук излучается одним ПЭП (И), проходит через контролируемое изделие и принимается другим ПЭП (П) на другой стороне. Признаком дефекта при теневом методе является уменьшение ниже порогового уровня или пропадание сигнала прошедшего через контролируемое изделие . Метод обладает высокой чувствительностью, но не дает информации о глубине залегания дефекта. О величине дефекта можно судить по степени ослабления прошедшего сигнала. На уменьшение амплитуды сигнала при теневом прозвучивании влияют кроме того и другие факторы: шероховатость поверхности, затухание ультразвука, расхождение пучка, нарушение соосности преобразователей. При зеркально-теневом методе (ЗТМ) излучатель и приемник расположены на одной стороне (контактной). Зеркально- теневой метод можно реализовать либо одним прямым, либо двумя наклонными преобразователями. При работе по первой схеме в рельсовой дефектоскопии чаще используются раздельно-совмещенный преобразователь. Приемник регистрирует сигнал, отраженный от противоположной стороны (донной), который называют «донным» сигналом. Ультразвук проходит изделие два раза, что повышает чувствительность контроля. Можно работать также по второму и последующим донным сигналам, причем чувствительность при этом будет увеличиваться. В отличие от теневого метода ЗТМ не требует двухстороннего доступа к изделию, но необходимо наличие двух плоско-параллельных поверхностей. При использовании прямых ПЭП также не дает информации о глубине залегания дефекта. Признаком дефекта при ЗТМ контроля является пропадание донного сигнала или его ослабление ниже порогового уровня . О величине дефекта можно судить по степени ослабления донного сигнала. Выявляемость дефекта не сильно зависит от его ориентации по отношению к акустической оси. Эхо-метод ультразвуковой дефектоскопии основан на посылке в изделие коротких ультразвуковых сигналов (зондирующих импульсов) и регистрации сигналов (эхо-сигналов), отраженных от выявляемых дефектов .При контроле прямым преобразователем наряду с эхо-сигналом от дефекта на экране может присутствовать донный сигнал. Возможен контроль лучом, отраженным от противоположной поверхности (рис 2.4 в) а также многократно отраженными лучами.Признаком дефекта при эхо-методе контроля является появление в зоне контроля эхо-сигнала с амплитудой выше порога срабатывания АСД при заданной чувствительности дефектоскопа. В некоторых случаях (например, трещина с зеркальной поверхностью, ориентированная под углом отличным от нуля к акустической оси преобразователя) эхо-метод может вообще не обнаружить даже сильно развитый дефект. Однако, если известно куда будет направлен отраженный от дефекта сигнал, приемник можно установить на его пути и зарегистрировать этот сигнал. Такой метод контроля называется зеркальным

    Основные измеряемые характеристики дефекта при импульсном эхо методе: координаты дефекта, условные размеры дефекта. Виды поверхностей, отражающих ультразвук.

Принцип измерения координат отражателя при эхо-методе УЗК заключается в измерении времени прихода эхо-сигнала – t после зондирующего импульса и пересчете его в соответствующую координату.При работе с прямым ПЭП определяется только глубина залегания отражающей поверхности дефекта – Н . Она рассчитывается по времени t прихода эхо-сигнала.Для наклонного ПЭП определяют две координаты: H – глубину залегания отражающей поверхности дефекта и L – расстояние от точки выхода луча до проекции отражающей поверхности дефекта на поверхность изделия, по которой производится сканирование.Значение глубины залегания Н и расстояние L определяются при положении ПЭП, в котором эхо-сигнал имеет наибольшее значение. При обнаружении дефекта с помощью ультразвуковых методов контроля нельзя измерить его истинные размеры, но можно их ориентировочно оценить. Такие размеры дефекта назвали условными , они, как правило, больше истинных и зависят от многих факторов: конфигурации, ориентации, глубины залегания дефекта, способа измерения, чувствительности дефектоскопа, а также диаграммы направленности ПЭП. Знание условных размеров помогает оценить опасность дефекта и принять решение о возможности дальнейшей эксплуатации объекта.К условным линейным размерам дефекта относятся:условная протяженность ΔL ; условная высота – ΔН ; условная ширина – ΔX . В рельсовой дефектоскопии используется также понятие условной протяженности дефекта по длине рельса. При работе наклонными ПЭП можно измерять все три условных размера.

    Понятие о развертках типа А и В.

    Конструкция и назначение стандартного образца СО-3Р. Основные параметры контроля рельсов при импульсном эхо-методе. Порядок их настройки.

Федеральное агентство по образованию Российской Федерации Дальневосточный государственный технический университет (ДВПИ им. В.В. Куйбышева) Утверждаю: Заместитель председателя президиума Дальневосточного учебно – методического центра Профессор ___________________ А.А.Белоусов «______» ______________ 2007г. Контрольно-измерительные материалы для оценки уровня знаний студентов специальности «Акустические приборы и системы» по дисциплине «Неразрушающие методы контроля» Разработаны доцентом кафедры ГА Сальниковой Е.Н. Владивосток 2007 Дисциплина «Неразрушающие методы контроля» является одной из дисциплин специализации при подготовке студентов по специальности «Акустические приборы и системы». Неразрушающие методы контроля (НМК), или дефектоскопия, – это обобщающее название методов контроля материалов (изделий), используемых для обнаружения нарушения сплошности или однородности макроструктуры, отклонений химического состава и других целей, не требующих разрушения образцов материала и/или изделия в целом. Улучшение качества промышленной продукции, повышение надежности и долговечности оборудования и изделий возможно при условии совершенствования производства и внедрения системы управления качеством. Важными критериями высокого качества деталей машин, механизмов, приборов являются физические, геометрические и функциональные показатели, а также технологические признаки качества, например, отсутствие недопустимых дефектов; соответствие физико-механических свойств и структуры основного материала и покрытия; соответствие геометрических размеров и чистоты обработки поверхности требуемым нормативам и т.п. Широкое применение неразрушающих методов контроля, не требующих вырезки образцов или разрушения готовых изделий, позволяет избежать больших потерь времени и материальных затрат, обеспечить частичную или полную автоматизацию операций контроля при одновременном значительном повышении качества и надежности изделий. В настоящее время ни один технологический процесс получения ответственной продукции не внедряется в промышленность без соответствующей системы неразрушающего контроля. Дисциплина «Неразрушающие методы контроля» призвана подготовить выпускника к решению следующих профессиональных задач в области проектно – конструкторской деятельности: разработка функциональных и структурных схем приборов и систем с определением физических принципов действия устройств, их структур и установлением требований на отдельные блоки и элементы; оценка технологичности конструкторских решений, составление технической документации, включая инструкции по эксплуатации, программы испытаний, технические условия и другое, а также в области производственно – технологической деятельности: разработка и внедрение технологических процессов и методов изготовления, контроля качества элементов и узлов приборов различного назначения. Дисциплина читается в 9 семестре в объеме 51 час. лекций по рабочему учебному плану 2002г. и 34 час. – по плану 2005г. Назначение контрольно-измерительных материалов – текущий контроль усвоения материала дисциплины «Неразрушающие методы контроля». В соответствии с рабочими учебными программами дисциплины предусмотрено выполнение 8 экспресс-опросов после каждой из основных тем, 1 теста, 2 контрольных работ – рубежной и итоговой, а также 1 2 индивидуального задания. При успешном выполнении ИДЗ студент получает 4 балла, теста – 3 балла, каждого из ЭО - по 4 балла, 1 контрольная работа оценивается в 9 баллов, заключительная в 12 баллов. Таким образом успешно обучающийся студент в течение семестра может набрать не менее 60 баллов из 100 общих, предусмотренных балльно-рейтинговой системой оценки освоения дисциплины, что соответствует минимальному уровню, удовлетворяющему требованиям ГОС ВПО №331 инф/СП специальности 200105. Условия применения Контроль проводится письменно во время аудиторного занятия. При проведении экспресс опросов студент получает лист с индивидуальным заданием, включающим 2-3 вопроса (в зависимости от темы), выбранных произвольным образом преподавателем из приведенных в настоящей разработке перечней. При проведении тестирования студенту выдается бланк теста. Использована как закрытая форма, предусматривающая выбор правильного ответа из нескольких приведенных, так и открытая, при которой предусмотрена самостоятельная формулировка ответа. При проведении контрольной работы 1 студенту выдается бланк, содержащий 14 вопросов, сформированных преподавателем из банка вопросов для контроля 1-4 разделов. В КИМ приведены 10 вариантов заданий для КР1. Итоговая контрольная работа включает 28 вопросов. Разработано 15 вариантов. Для ответа на ЭО студенту отводится 10 минут, на тест 20 минут, на КР1 отводится 40 минут, на КР2 – 1час 30 минут. Инструкция для студента При ответе на вопрос Задание переписывать не надо. Следует записать Фамилию, группу, номер задания, номер вопроса и ответ. Для успешной оценки теста достаточно набрать 60% из максимально возможного количества баллов, указанных в тесте. Для успешного прохождения контрольных работ – правильно ответить на 8 из 14 и 17 из 28 вопросов. Сообщение о результатах проверки и разбор типичных ошибок проводятся на следующем занятии 3 Тема «Основные виды НМК» Тест №1 Дата разработки 18.04.2006 Внимательно прочитайте начало определения, приведенное в графе 2, и подберите правильное окончание в графе 3. Отметьте выбранный ответ. В графе 4 кратко обоснуйте выбор. По результатам ответов заполните таблицу на оборотной стороне листа. Укажите фамилию, номер группы. № Начало определения Окончание определения Краткое обоснование ответа 1 2 3 4 1 В соответствии с ИСО - а) способность продукции удовлетворять 8402 «качество - это требованиям потребителя». б) совокупность характеристик объекта, относящаяся к его способности удовлетворять обусловленные или предполагаемые потребности». в) совокупность характеристик изделия, влияющая на его работоспособность». г) все перечисленное выше. д) ничего из перечисленного выше. 2 НМК обязательно а) производстве особо ответственных деталей применяются при и устройств. б) производстве узлов и деталей устройств длительной эксплуатации. в) любого изделия. г) хорошего изоляционного материала. д) материала с высокой электропроводностью. е) исследованиях структуры материалов и дефектов. ж) все перечисленное выше. з) ничего из перечисленного выше. 3 Акустические НМК а) поверхностных дефектов. пригодны для б) внутренних дефектов в виде трещин. обнаружения в) внутренних дефектов в виде раковин. г) подповерхностных дефектов. д) ничего из перечисленного выше. е) все перечисленное выше. 4 Капиллярные НМК а) поверхностных дефектов. пригодны для б) внутренних дефектов в виде трещин. обнаружения в) внутренних дефектов в виде раковин. г) подповерхностных дефектов. д) ничего из перечисленного выше – напишите сами ответ. е) все перечисленное выше. 5 Визуально-оптические а) на измерении амплитуды или фазы методы основаны прошедшего светового излучения. б) на измерении индуцированного излучения. в) на измерении степени поляризации прошедшего излучения. г) все перечисленное выше. д) ничего из перечисленного выше – напишите сами ответ. 4 6 Информативным а) амплитуда прошедшего излучения. параметром б) амплитуда рассеянного излучения. радиоволновых методов в) амплитуда отраженного излучения. является г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 7 Дефекты в проволоке а) радиационными методами НК. из неферромагнитного б) радиоволновыми методами НК. материала лучше всего в) магнитными методами НК. выявляются г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 8 Дефекты в проволоке а) капиллярными НМК. из ферромагнитного б) Магнитными НМК. материала лучше всего в) радиоволновыми НМК. выявляются г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 9 Наиболее дорогой из а) акустический. НМК б) радиографический. в) капиллярный. г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 10 Основные требования к Напишите ваш ответ КО при акустических методах контроля 11 Основные требования к КО при радиографическом контроле литых изделий 12 Перечислите преимущества разрушающих методов контроля 13 Перечислите основные недостатки НМК Студент группы __________________ ФИО ___________________________________ Вопрос 1 2 3 4 5 6 7 8 9 10 11 12 13 13 Ответ Результат Набранный балл _____________ максимально возможный __61___---- Преподаватель ___________________ Дата проведения _____________ 5 Тема «Основные виды НМК» Тест №1 КЛЮЧ Вопрос 1 2 3 4 5 6 7 8 9 10 11 12 13 Всего Ответ Б А,Б,Е Е А Г Д Д Б, Д Б Результат 5 5 5 5 5 5 4-5 3-5 4-5 5 5 3 3 61 6. Правильный ответ: Радиоволновые методы основаны на регистрации параметров электромагнитных волн СВЧ диапазона с КО. 7. Правильный ответ: Акустический, Токовихревой. 8. Правильный ответ: Акустический, Токовихревой, Магнитный 9. Правильный ответ: Радиационный и Течеискания. 10. При контроле труб диаметром <=4 мм и толщиной >=1мм необходимо очистка поверхности от грязи, отслаивающейся окалины. 11. Необходим двусторонний доступ к КО, отсутствие наружных дефектов, превышающих чувствительность контроля. 12. 1. Испытания обычно имитируют одно или несколько рабочих условий. Следовательно, они непосредственно направлены на измерение эксплуатационной надежности. 2. Испытания обычно представляют собой количественные измерения разрушающих нагрузок или срока службы до разрушения при данном нагружении и условиях. Таким образом, они позволяют получить числовые данные, полезные для целей конструирования или для разработки стандартов или спецификаций. 3. Связь между большинством измерений разрушающим контролем и измеряемыми свойствами материалов (особенно под нагрузкой, имитирующей рабочие условия) обычно прямая. Следовательно, исключаются споры по результатам испытания и их значению для эксплуатационной надежности материала или детали. 13. 1. Испытания обычно включают в себя косвенные измерения свойств, не имеющих непосредственного значения при эксплуатации. Связь между этими измерениями и эксплуатационной надежностью должна быть доказана другими способами. 2. Испытания обычно качественные и редко количественные. Обычно они не дают возможности измерения разрушающих нагрузок и срока службы до разрушения даже косвенно. Они могут, однако, обнаружить дефект или проследить процесс разрушения. 3. Обычно требуются исследования на специальных образцах и исследование рабочих условий для интерпретации результатов испытания. Там, где соответствующая связь не была доказана, и в случаях, когда возможности методики ограничены, наблюдатели могут не согласиться в оценке результатов испытаний. 6 Тема «Основные виды НМК» Тест №2 Дата разработки 18.04.2006 Внимательно прочитайте начало определения, приведенное в графе 2, и подберите правильное окончание в графе 3. Отметьте выбранный ответ. В графе 4 кратко обоснуйте выбор. По результатам ответов заполните таблицу на оборотной стороне листа. Укажите фамилию, номер группы. № Начало определения Окончание определения Краткое обоснование ответа 1 2 3 4 1 Контроль качества а) ее работоспособности. продукции заключается б) соответствия показателей ее качества в проверке установленным требованиям. в) соответствия показателей требованиям безопасности эксплуатации. г) все перечисленное выше. д) ничего из перечисленного выше – Ваш вариант ответа. 2 Перечислите важнейшие критерии качества деталей машин, механизмов, приборов 3 Магнитные НМК а) поверхностных дефектов. пригодны для б) внутренних дефектов в виде трещин. обнаружения в) внутренних дефектов в виде раковин. г) подповерхностных дефектов. д) ничего из перечисленного выше. е) все перечисленное выше. 4 Радиоволновые НМК а) поверхностных дефектов. пригодны для б) внутренних дефектов в виде трещин. обнаружения в) внутренних дефектов в виде раковин. г) подповерхностных дефектов. д) ничего из перечисленного выше – напишите сами ответ. е) все перечисленное выше. 5 Радиационные методы а) на измерении амплитуды или фазы основаны прошедшего проникающего излучения. б) на измерении индуцированного излучения. в) на измерении степени поляризации прошедшего излучения. г) все перечисленное выше. д) ничего из перечисленного выше – напишите сами ответ. 6 Информативным а) амплитуда прошедшего излучения. параметром б) амплитуда рассеянного излучения. акустических методов в) амплитуда отраженного излучения. является г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 7 Дефекты в отливках из а) радиационными методами НК. неферромагнитного б) радиоволновыми методами НК. материала лучше всего в) магнитными методами НК. 7 выявляются г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 8 Дефекты в резиновых а) капиллярными НМК. изделиях лучше всего б) Магнитными НМК. выявляются в) радиоволновыми НМК. г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 9 Наиболее опасный из а) акустический. НМК для б) радиографический. обслуживающего в) капиллярный. персонала г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 10 Основные требования к Напишите ваш ответ КО при контроле течеисканием 11 Основные требования к КО при акустическом контроле литых изделий 12 Перечислите основные недостатки разрушающих методов контроля 13 Перечислите основные достоинства НМК Студент группы __________________ ФИО ___________________________________ Вопрос 1 2 3 4 5 6 7 8 9 10 11 12 13 13 Ответ Результат Набранный балл _____________ максимально возможный ___73_---- Преподаватель ___________________ Дата проведения _____________ 8 Тема «Основные виды НМК» Тест №3 Дата разработки 18.04.2006 Внимательно прочитайте начало определения, приведенное в графе 2, и подберите правильное окончание в графе 3. Отметьте выбранный ответ. В графе 4 кратко обоснуйте выбор. По результатам ответов заполните таблицу на оборотной стороне листа. Укажите фамилию, номер группы. № Начало определения Окончание определения Краткое обоснование ответа 1 2 3 4 1 Основные требования, а) возможность проверки работоспособности предъявляемые к НМК изделий, продукции. это б) возможность проведения контроля качества на всех стадиях изготовления, эксплуатации и ремонта. в) высокая достоверность результатов контроля. г) все перечисленное выше. д) ничего из перечисленного выше – Ваш вариант ответа. 2 Перечислите основные области применения НМК 3 Токовихревые НМК а) поверхностных дефектов. пригодны для б) внутренних дефектов в виде трещин. обнаружения в) внутренних дефектов в виде раковин. г) подповерхностных дефектов. д) ничего из перечисленного выше. е) все перечисленное выше. 4 Радиационные НМК а) поверхностных дефектов. пригодны для б) внутренних дефектов в виде трещин. обнаружения в) внутренних дефектов в виде раковин. г) подповерхностных дефектов. д) ничего из перечисленного выше – напишите сами ответ. е) все перечисленное выше. 5 Тепловые методы НК а) на измерении тепловых полей КО. основаны б) на измерении параметров упругого поля КО. в) на измерении температурного поля работающего объекта. г) все перечисленное выше. д) ничего из перечисленного выше – напишите свой ответ. 6 Информативным а) изменение теплового поля объекта. параметром тепловых б) температурное поле работающего объекта. методов НК является в) изменение электрического поля, взаимодействующего с КО. г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 7 Дефекты в а) радиационными методами НК. многослойных б) радиоволновыми методами НК. диэлектрических в) магнитными методами НК. 9 изделиях лучше всего г) все перечисленное выше. обнаруживаются д) ничего из приведенного выше – напишите Ваш ответ 8 Дефекты в листах а) капиллярными НМК. стали толщиной до 1 мм б) Магнитными НМК. лучше всего в) радиоволновыми НМК. выявляются г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 9 Наиболее опасный из а) акустический. НМК для окружающей б) радиографический. среды в) капиллярный. г) все перечисленное выше. д) ничего из приведенного выше – напишите Ваш ответ 10 Основные требования к Напишите ваш ответ КО при контроле токовихревыми НМК 11 Основные требования к КО при акустическом контроле труб 12 Перечислите основные достоинства разрушающих методов контроля 13 Перечислите основные достоинства НМК Студент группы __________________ ФИО ___________________________________ Вопрос 1 2 3 4 5 6 7 8 9 10 11 12 13 13 Ответ Результат Набранный балл _____________ максимально возможный ___67_---- Преподаватель ___________________ Дата проведения _____________ 10

Cлайды, которые теоретически могут помочь сдать общий экзамен на 1-2 уровень по ультразвуковому контролю.

Сокращения:
НК - неразрушающий контроль
ОК - объект контроля

Термины и определения:

Качество продукции - совокупность свойств продукции, обуславливающих ее способность удовлетворять определенные потребности в соответствии с ее назначением
Контроль (технический контроль) - проверка соответствия объекта установленным техническим требованиям
Вид контроля - классификационная группировка контроля по определенному признаку
Метод контроля - правила применения определенных принципов и средств контроля
Метод неразрушающего контроля (НК) - метод контроля, при котором не должна быть нарушена пригодность объекта к применению
Система контроля - совокупность средств контроля, исполнителей и определенных объектов контроля, взаимодействующих по правилам, установленным соответствующей нормативной документацией
Средство контроля - техническое устройство, вещество и (или) материал для проведения контроля
Контролепригодность - свойство изделия, обеспечивающее возможность, удобство и надежность его контроля при изготовлении, испытаниях, техническом обслуживании и ремонте

Входной контроль - контроль продукции поставщика, поступившей к потребителю или заказчику, и предназначенный для использовании при изготовлении, ремонте или эксплуатации продукции
Операционный контроль - контроль продукции или процесса во время выполнения или после завершения технологической операции
Приемочный контроль - контроль продукции, по результатам которого принимается решение о ее пригодности к поставкам и (или) использованию

Дефект - каждое отдельное несоответствие объекта установленным требованиям (ГОСТ 15467-79)
Несплошность - нарушение однородности материала, вызывающее скачкообразное изменение одной или нескольких его физических характеристик (плотности, магнитной проницаемости, скорости звука, волнового сопротивления и проч.)
Дефектное изделие - изделие, имеющее хотя бы один дефект
Критический дефект - дефект, при наличии которого использование продукции по назначению практически невозможно или недопустимо
Значительный дефект - дефект, который существенно влияет на использование продукции по назначению и (или) на ее долговечность, но не является критическим
Малозначительный дефект - дефект, который существенно не влияет на использование продукции по назначению и ее долговечность

Достоверность контроля - характеристика (качественная или количественная) контроля, показывающая на основе предварительно установленных критериев близость к ситуации, исключающей как перебраковку, так и недобраковку
Перебраковка - отсутствие дефектов хотя бы в одном из забракованных по результатам контроля объектов
Недобраковка - наличие дефекта хотя бы в одном из объектов, признанных годными по результатам контроля

Как известно из ГОСТ 18353-79, существуют 9 видов НК:
1. Магнитный - вид НК, основанный на анализе взаимодействия магнитного поля с ОК)
2. Электрический - вид НК, основанный на регистрации параметров электрического поля, взаимодействующего с ОК или возникающего в ОК в результате внешнего воздействия
3. Вихретоковый - вид НК, основанный на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в ОК
4. Радиоволновой - вид НК, основанный на регистрации изменений параметров электромагнитных волн радиодиапазона, взаимодействующих с ОК
5. Тепловой - вид НК, основанный на регистрации изменений тепловых или температурных полей ОК, вызванных дефектами
6. Оптический - вид НК, основанный на регистрации параметров оптического излучения, взаимодействующего с ОК
7. Радиационный - вид НК, основанный на регистрации и анализе проникающего ионизирующего излучения после взаимодействия с ОК
8. Акустический - вид неразрушающего контроля, основанный на регистрации параметров упругих волн, возбуждаемых и (или) возникающих в ОК
9. Проникающими веществами (капиллярный и течеисканием) - вид неразрушающего контроля, основанный на проникновении веществ в полости дефектов ОК

Методы каждого вида НК классифицируются по следующим признакам:

характеру взаимодействия физических полей или вещества с ОК;
первичным информативным параметрам;
способам получения первичной информации.

Классификация методов в соответствии с ПБ 03-440-02 немного отличается.
«Правила аттестации персонала в области неразрушающего контроля» ПБ 03-440-02 устанавливают порядок аттестации персонала, выполняющего НК технических устройств, зданий и сооружений на опасных производственных объектах. Аттестация персонала в области НК проводится в целях подтверждения достаточности теоретической и практической подготовки, опыта, компетентности специалиста, т.е. его профессиональных знаний, навыков, мастерства и предоставления права на выполнение работ по одному или нескольким видам (методам) НК. Специалисты НК в зависимости от их подготовки и производственного опыта аттестуются по трем уровням профессиональной квалификации – I, II, III.
Аттестации подлежит персонал, проводящий контроль объектов с применением следующих видов (методов) НК:
1. Радиационный РК (RT)
1.1. Рентгенографический
1.2. Гаммаграфический
1.3. Радиоскопический
2. Ультразвуковой УК (UT)
2.1. Ультразвуковая дефектоскопия
2.2. Ультразвуковая толщинометрия
3. Акустико-эмиссионный АЭ (AT)
4. Магнитный МК (MT)
4.1. Магнитопорошковый
4.2. Магнитографический
4.3. Феррозондовый
4.4. Эффект Холла
4.5. Магнитной памяти металла
5. Вихретоковый ВК (ET)
6. Проникающими веществами
6.1. Капиллярный
6.2. Течеискание
7. Вибродиагностический ВД
8. Электрический ЭК
9. Тепловой ТК
10. Оптический ОК
11. Визуальный и измерительный ВИК (VT)
12. Контроль напряженно-деформированного состояния НДС
12.1. Радиационный
12.2. Ультразвуковой
12.3. Магнитный
12.4. Вихретоковый

Кандидат, претендующий на прохождение аттестации на один из трех уровней квалификации, аттестуется по конкретным методам НК. Областью аттестации каждого кандидата является сфера его деятельности по контролю конкретных объектов:
1. Объекты котлонадзора
2. Системы газоснабжения (газораспределения):
3. Подъемные сооружения
4. Объекты горнорудной промышленности
5. Объекты угольной промышленности
6. Оборудование нефтяной и газовой промышленности
7. Оборудование металлургической промышленности
8. Оборудование взрывопожароопасных и химически опасных производств
9. Объекты железнодорожного транспорта
10. Объекты хранения и переработки зерна
11. Здания и сооружения (строительные объекты)
12. Оборудование электроэнергетики

Теперь перейдем к определениям из раздела "Колебания и волны".
Колебание - движение вокруг некоторого среднего положения, обладающее повторяемостью во времени
Волна - колебательные движения, распространяющиеся в пространстве: колебания одной точки среды передаются соседней и так далее
В акустике рассматривают упругие колебания и волны, в других видах неразрушающего контроля используются электромагнитные колебания и волны.
Упругость - свойство точек среды возвращаться к первоначальному состоянию после прекращения воздействия силы

Колебания характеризуются частотой и амплитудой.
Частота - количество периодов (циклов) колебаний в единицу времени (обычно секунду)
Колебания от точки к точке среды передаются с определенной скоростью – скоростью распространения звука.
Длина волны - минимальное расстояние между двумя точками, колеблющимися в одной фазе

Скорость звука во многих металлах около 6000 м/с. При частоте 6 МГц длина волны равна 1 мм. При ультразвуковом контроле металлов обычно используют волны длиной от 0,06 до 12 мм.
Амплитуда - наибольшее отклонение от положения равновесия
В ультразвуковом контроле обычно измеряют ослабление амплитуды A" относительно возбужденных в объекте контроля колебаний Aо. Для этого применяют логарифмические единицы – децибелы (дБ).
Т.к. A"




В акустике рассматриваются изотропные среды.
Изотропия - независимость физических свойств среды от направления в ней. Среды, в которых свойства зависят от направления, называют анизотропными.

Ультразвуковая волна - процесс распространения упругих колебаний ультразвуковой частоты в материальной среде
Луч - направление, в котором распространяется максимум энергии волнового процесса
Фронт - совокупность точек, колеблющихся в одной фазе, до которых в заданный момент дошел волновой процесс
Диапазон частот упругих колебаний

Объемные волны

Продольная волна существует а твердых телах, жидкостях и газах.
Колебательное движение отдельных частиц происходит в том же направлении, в котором распространяется волна.

Поперечные волны существуют только в твердом теле.
Отдельные частицы колеблются в направлении, перпендикулярном направлению распространения волны.


Поперечные волны подразделяются на горизонтально поляризованные SH и вертикально поляризованные SV. При контроле наклонным ПЭП используется SV поляризованная поперечная волна.

Поверхностные волны
Поверхностная волна (Рэлея)
- комбинация продольных и поперечных волн
- распространяется вдоль свободной границы твердого тела
- частицы совершают колебания по эллипсам
- волна распространяется на большие расстояния
- быстро затухает с глубиной
Головная волна
- скорость практически равна скорости продольной волны
- при распространении вдоль поверхности в каждой точке порождает поперечную волну под углом к нормали
- волна быстро ослабляется

Волны в ограниченных твердых телах
1. Волны в пластине (волны Лэмба)
2. Волны в стержнях (волны Похгаммера)
Скорость распространения зависит от:
- частоты (явление дисперсии скорости)
- упругих свойств материала
- поперечных размеров пластины или стержня
Характерны две скорости распространения:
- фазовая - скорость изменения фазы в направлении распространения
- групповая - скорость распространения энергии при передаче импульса



Закон Снеллиуса (синусов)

Направление отраженных и преломленных, продольных и поперечных волн определяется законом синусов (законом Снеллиуса).
Для всех волн отношение синуса угла (между направлением волны и нормалью к поверхности раздела) к скорости волны будет постоянной величиной.



Критические углы

1-й критический угол
наименьший угол падения продольной волны, при котором преломленная продольная волна не будет проникать во вторую среду (возникновение головной волны)


2-й критический угол
наименьший угол падения продольной волны, при котором преломленная поперечная волна не будет проникать во вторую среду (появление поверхностной волны Рэлея)


3-й критический угол
наименьший угол падения поперечной волны, при котором еще отсутствует отраженная продольная волна


Ультразвуковое поле
Пьезопластину представляем состоящей из большого количества элементарных излучателей.
В непосредственной близости ультразвук распространяется в виде параллельного пучка лучей (прожекторная зона).
Расстояния от разных излучателей до некоторой точки B могут сильно отличаться. Соответственно, отличаются и фазы приходящих сигналов. При совпадении фазы амплитуда увеличивается, если фазы противоположны – амплитуда уменьшается.
Появляются максимумы и минимумы амплитуды. Энергия находится в пределах нерасходящегося пучка. Эта область называется ближней зоной, ближнем полем или зоной Френеля .
В ближней зоне сложно определить максимумы амплитуд эхосигналов от отражателей, вследствие чего можно ошибиться в оценке их размеров, количестве и координат.
Например, в середине ближней зоны поле имеет минимум на оси преобразователя, а в стороне – максимумы. При обнаружении одной несплошности можно решить, что найдено две, расположенные по сторонам от истинного положения несплошности.
В дальней зоне появление максимумов и минимумов под влиянием разности фаз приходящих волн происходит только когда точка находится в стороне от оси преобразователя.
Основная часть поля имеет вид расходящихся конусом лучей из центра преобразователя.
Максимум амплитуды соответствует оси преобразователя. С увеличением угла между направлением какого-либо луча и осью амплитуда уменьшается. За пределами некоторого угла (угла раскрытия) излучение почти не чувствуется. Угол раскрытия определяет направленность излучения.


a – радиус круглого пьезоэлемента;
α - угол ввода;
β - угол призмы;
λ – длина волны;
- угол раскрытия по уровню (-20) дБ
n – коэффициент, равный 0,45 для круглой и 0,38 для прямоугольной пьезопластины